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We deal with the question of Masayoshi Hata: is every Peano continuum a 
topological fractal? A compact space X is a topological fractal if there exists F a 
finite family of self-maps on X such that X =

⋃
f∈F f(X) and for every open cover 

U of X there is n ∈ N such that for all maps f1, . . . , fn ∈ F the set f1 ◦ · · · ◦ fn(X)
is contained in some set U ∈ U .
In the paper we present some idea how to extend a topological fractal and we 
show that a Peano continuum is a topological fractal if it contains so-called self 
regenerating fractal with nonempty interior. A Hausdorff topological space A is a 
self regenerating fractal if for every non-empty open subset U , A is a topological 
fractal for some family of maps constant on A \ U .
The notion of self regenerating fractal much better reflects the intuitive perception 
of self-similarity. We present some classical fractals which are self regenerating.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

We deal with the topological generalization of IFS-attractors - a compact set invariant under the finite 
family of contractions. Let us recall that a function f between two metric spaces is called contraction if its 
Lipschitz constant Lipf < 1. By an iterated function system (IFS) on a metric space X we understand a 
finite family of contractions X → X. A function X → X is called a self-map on X. For a given family F of 
self-maps on X we define the following families of maps:

F0 = {idX}, Fn = {f1 ◦ · · · ◦ fn; f1, . . . , fn ∈ F}.

Moreover, let F(Y ) =
⋃

f∈F f(Y ) for Y ⊂ X.
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Let F be an iterated function system on a metric space X. A compact set A ⊂ X is an IFS-attractor
(deterministic fractal, self-similar set) for F if A = F(A). A simple example of such space is the unit 
interval [0, 1] - the IFS-attractor for family {x

2 , 
x+1
2 }. Other known examples are the ternary Cantor set, 

Koch curve, Sierpiński triangle, Sierpiński carpet, etc. It can be also shown that every arc of finite length 
is an IFS-attractor (see [7]).

A topological fractal is a topological version of IFS-attractor. It is a pair (X, F) where X is a compact 
space, F is a finite family of continuous self-maps which has some topological contractive property on X
(see Definition 2.1) and X = F(X). Topological fractals have been studied in various contexts, e.g. among 
countable spaces [6] or zero-dimensional spaces [2]. Now we are interested in topological fractals in the 
class of Peano continua. By Peano continuum we understand a metrizable, locally connected continuum or, 
equivalently (thanks to the Hahn–Mazurkiewicz theorem), a continuous image of the unit interval. Masayoshi 
Hata proved in [5] that for every topological fractal (X, F) if X is connected, then it is locally connected, 
so it is a Peano continuum. It is still an open question: is every Peano continuum a topological fractal?

Looking for the conditions when a Peano continuum P becomes a topological fractal, we discover that 
the existence of a free arc (an open subset of P homeomorphic to the interval) implies this result (see [4]). 
This leads us to the notion of self regenerating fractal. A Hausdorff topological space X is called a self 
regenerating fractal if for every nonempty, open subset U there exists F , a family of continuous functions 
constant outside U such that (X, F) is a topological fractal. Having such a self regenerating fractal as a 
subset with nonempty interior, guarantees that a Peano continuum is a topological fractal together with 
some family of maps. This is our main result presented in the chapter 4:

Main theorem. For every Peano continuum X which has A ⊂ X self regenerating fractal with nonempty 
interior, X is an underlying space for some topological fractal.

This statement and definition of self regenerating fractal are proposed by Taras Banakh and developed 
by the author.

2. Topologically contracting systems

The generalization of iterated function systems for topological spaces was proposed by Banakh and Nowak 
in [1] as topologically contracting families of maps.

Definition 2.1. A finite family F of continuous self-maps on the Hausdorff space X is called a topologically 
contracting system on Y ⊂ X if for any open cover U of Y there exists a number n such that for every 
f1, . . . , fn ∈ F the image f1 ◦ · · · ◦ fn(Y ) is contained in some set U ∈ U .

Remark 2.2. If the set Y ⊃ F(X), then the definition of topologically contracting system F on Y is 
equivalent to the condition that for any open cover U of Y there exists a number n such that for every 
m ≥ n and f1, . . . , fm ∈ F the image f1 ◦ · · · ◦ fm(Y ) lies in some set from the cover U .

It can be easily shown that

Remark 2.3. If F is a finite family of continuous self-maps on the metric space X and Y ⊂ X is compact 
such that

• F(X) ⊂ Y

• maps from F are contractions on Y

then F is a topologically contracting system on Y .
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Proof. Let us recall that for every open cover U of the compact metric space Y there exists so-called 
Lebesgue number λ, which guarantees that every subset of Y with diameter < λ lies in some element of U . 
Now take α = maxf∈F Lipf |Y < 1 and the natural number n such that αn · diam(Y ) < λ. Then for every 
f1, . . . , fn ∈ F , the image f1 ◦ · · · ◦ fn(Y ) lies in some set from U because its diameter is < λ. �

Thus every iterated function system on the compact metric space X is topologically contracting on 
X. Moreover, we can prove that every topologically contracting system on the Hausdorff space X is also 
topologically contracting on F(X), if F(X) is closed. The area where a given family F is topologically 
contracting is in fact arbitrary if only it is a closed set lying between F(X) and X. It is shown in the 
following

Lemma 2.4. For a finite family F of continuous self-maps on the Hausdorff space X and every nonempty, 
closed Y such that F(X) ⊂ Y ⊂ X the following facts are equivalent

(i) F is topologically contracting system on X
(ii) F is topologically contracting system on Y

Proof. Step 1. (i)⇒(ii)
Take U the open cover of Y . Then V = U ∪ {X \ Y } is an open cover of X, such that for every V ∈ V
if V ∩ Y �= ∅ then V ∈ U . From the assumption (i) there exists a natural number n, such that for every 
f1, . . . , fn ∈ F there exists V ∈ V such that f1 ◦ · · ·◦fn(X) ⊂ V . Due to the Remark 2.2 we can assume that 
n ≥ 1 so the image f1 ◦ · · · ◦fn(X) is also a subset of F(X) ⊂ Y . Moreover a nonempty set f1 ◦ · · · ◦fn(Y ) ⊂
f1 ◦ · · · ◦ fn(X) ⊂ V ∩ Y which means that V ∈ U and F is a topologically contracting system on Y .
Step 2. (i)⇐(ii)
Take U the open cover of X. It is also an open cover of Y so we can find a number n, such that for every 
f1, . . . , fn ∈ F there exists U ∈ U such that f1 ◦ · · · ◦ fn(Y ) ⊂ U . Then for arbitrary fn+1 ∈ F the image 
f1 ◦ · · · ◦ fn+1(X) ⊂ f1 ◦ · · · ◦ fn(F(X)) ⊂ f1 ◦ · · · ◦ fn(Y ) ⊂ U . Thus F is a topologically contracting system 
on X. �

Note that in the proof (i)⇐(ii) we do not use the closeness of the set Y but only the fact that F(X) ⊂
Y ⊂ X so finally we have

Corollary 2.5. If F is topologically contracting on Y and F(X) ⊂ Y ⊂ X, then for every closed Z and 
arbitrary Z ′ where F(X) ⊂ Z ⊂ Y ⊂ Z ′ ⊂ X, the system F is topologically contracting on Z and on Z ′.

3. Topological fractals and their extensions

Assume that every compact set is also a Hausdorff space.

Definition 3.1. A pair (X, F) is called a topological fractal if X is a compact space, F is a topologically 
contracting system on X and X =

⋃
f∈F f(X). Then the space X and the family F will be called respectively 

an underlying space and a fractal structure of a topological fractal (X, F).

Note that in case of topological fractal (X, F) we have F(X) = X, so results from the chapter 2 are 
trivial. Nevertheless, they will be useful if we want to “extend a topological fractal” to the bigger set. 
Consider the following problem:

Problem 3.2. Let (Y, F) be a topological fractal and Y ⊂ X. How to construct a topologically contracting 
system G on X (contains extensions of maps from F) such that (X, G) is a topological fractal?
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Now we have to extend maps from F to the set X and maybe define another family P of self-maps on 
X. Then the situation that F(X) �= X and P(X) �= X is possible. Let imp = p(X) be an image of the map 
p : X → X. We obtain the following result:

Theorem 3.3. Let X be a compact metric space and F ∪ P be a finite family of continuous maps on X s.t.
X =

⋃
f∈F∪P f(X) then the following implications hold:

{
(i) F is a topologically contracting system on X

(ii) ∀f ∈ F ∪ P ∀p ∈ P f(imp) is a singleton
(!)

⇓{
(i) F and P are topologically contracting systems on X

(ii) ∀f ∈ F ∀p ∈ P f(imp) is a singleton
(!!)

⇓

(X,F ∪ P) is a topological fractal.

Proof. Step 1. (!)⇒(!!)
Due to the assumption (ii) we have that for all p, q ∈ P and f ∈ F sets f(imp) and q(imp) are singletons. 
Thus the singleton (q◦p)(X) lies in some set from the arbitrary cover of X, so P is topologically contracting 
on X.

Step 2. (!!)⇒ (X, F ∪ P) is a topological fractal
For U , an open cover of X, there exist five constants:

(1) ∃ n1 ∈ N such that ∀f1, . . . , fn1 ∈ F the image f1 ◦ · · · ◦ fn1(X) lies in some set from U .
(2) ∃ n2 ∈ N such that ∀p1, . . . , pn2 ∈ P the image p1 ◦ · · · ◦ pn2(X) lies in some set from U .
(3) ∃ ε > 0, the Lebesgue number of U (so each set with diameter < ε lies in some set from U).
(4) consider P<n2 =

⋃n2−1
n=0 Pn, the family of continuous functions on the compact space X. All such maps 

are uniformly continuous. Thus there exists δ > 0 such that for all f ∈ P<n2 and every Y ⊂ X

diam(Y ) < δ ⇒ diamf(Y ) < ε

so from (3) f(Y ) lies in some set from U .
(5) Take V = {B(x, δ2)}x∈X the cover of X containing open balls of diameter < δ. Then there exists n3 ∈ N

such that for all f1, . . . , fn3 ∈ F the image f1 ◦ · · · ◦ fn3(X) lies in some set from V so its diameter is 
< δ.

Then for n = max{n1, 2n2, 2n3} and every h1, . . . , hn ∈ F ∪ P we consider the following cases:

1. if h1, . . . , hn ∈ F then h1 ◦ · · · ◦ hn(X) lies in some set from U because n ≥ n1 and (1);
2. if there exists an index i ∈ {1, . . . , n − 1} such that hi ∈ F and hi+1 ∈ P, then h1 ◦ · · · ◦ hn(X) ⊂

h1 ◦ · · · ◦ hi(imhi+1) which is a singleton from assumption (ii), so it lies in some set from U ;
3. if there exists k ≤ n such that h1, . . . , hk ∈ P and hk+1, . . . , hn ∈ F , then

a) for k ≥ n2 the image h1 ◦ · · · ◦ hn(X) ⊂ h1 ◦ · · · ◦ hk(X) and from (2) both lie in some set from U ;
b) for k < n2 we have n −k ≥ n2+n3−k > n3 so by (5) diamhk+1◦· · ·◦hn(X) < δ and h1◦· · ·◦hk ∈ P<n2 . 

Then from (4) a diameter of the image h1 ◦ · · · ◦ hk(hk+1 ◦ · · · ◦ hn(X)) is < ε so it lies in some set 
from U . �
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Hence we have

Corollary 3.4. Let (Y, F) be a topological fractal. A pair (Y ∪ Z, F ′ ∪ P) is a topological fractal if

1) Y ∪ Z =
⋃

f∈F ′∪P f(Y ∪ Z)
2) F ′ is a topologically contracting system on Y ∪ Z

3) ∀f ∈ F ′ ∪ P ∀p ∈ P f(imp) is a singleton.

The family F ′ usually contains extensions of maps from F , such that Y = F(Y ) = F ′(Y ∪ Z) and 
Z = P(Y ) = P(Y ∪ Z). Then the set Z is a finite union of continuous images of Y , for example:

• Y is an arc and Z is a finite union of Peano continua;
• Y is a convergent sequence and Z is a scattered space of finite set of accumulation points;
• Y is the Cantor set and Z is an arbitrary compact space.

The union of these sets satisfies the assumption of Corollary 3.4 if they are disjoint or have only one common 
element. See Fig. 1 and the following statement:

Fig. 1. An outline of the proof of the Lemma 3.5 and examples for Y ∩ Z = ∅ and Y ∩ Z = {x0}.

Lemma 3.5. For every topological fractal (Y, F) and Z - finite union of continuous images of Y such that 
Y ∩Z is an empty set or a singleton, there exists a family F ′ ∪P ′ such that (Y ∪Z, F ′ ∪P ′) is a topological 
fractal.

Proof. Due to the fact that Z is a finite union of continuous images of Y , denote by P the family of 
continuous maps Y → Z such that Z = P(Y ). Now we define families F ′ and P ′ as follows.

If Y ∩Z = ∅, take an arbitrary y0 ∈ Y and z0 ∈ Z. Then for every f ∈ F and p ∈ P let f ′, p′ : Y ∪Z → Y ∪Z

be the maps such that

f ′(x) =
{
f(x); x ∈ Y

y ; x ∈ Z
p′(x) =

{
p(x); x ∈ Y

z ; x ∈ Z.
0 0
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If Y ∩ Z = {x0} then

f ′(x) =
{
f(x); x ∈ Y

f(x0); x ∈ Z
p′(x) =

{
p(x); x ∈ Y

p(x0) x ∈ Z.

Then F ′ = {f ′; f ∈ F} and P ′ = {p′; p ∈ P} satisfy all assumptions of Corollary 3.4 which ends the 
proof. �

Fig. 1 shows the idea used in the proof and some examples of underlying spaces for some topological 
fractal.

When the intersection of sets Y and Z has more than one point the situation is more complicated.

Remark 3.6. There exist examples of topological fractal (Y, F) and a set Z where Y ∩ Z is finite and 
(Y ∪ Z, F ′ ∪ P ′) is a topological fractal for some fractal structure F ′ ∪ P ′.

For example Y ∪ Z is a Peano continuum and Y is the closure of so-called free arc. This example had 
been described in [4]. The idea of the proof is shown in the Fig. 2.

Fig. 2. A Peano continuum with a free arc is a topological fractal.

The assumption (!!) from Theorem 3.3 is more symmetric than (!). Using it we obtain also

Corollary 3.7. Let (Y, F) and (Z, P) be topological fractals and Y, Z be subsets of the same topological space. 
A pair (Y ∪ Z, F ′ ∪ P ′) is a topological fractal if

1) Y ∪ Z =
⋃

f∈F ′∪P′ f(Y ∪ Z)
2) F ′ and P ′ are topologically contracting systems on Y ∪ Z

3) f(imp) is a singleton for all f ∈ F ′, p ∈ P ′.

Again, the families F ′ and P ′ usually contain extensions of maps from F and P, and Y = F(Y ) =
F ′(Y ∪ Z) and Z = P(Z) = P ′(Y ∪ Z).

Looking for sufficient conditions for being underlying space for some topological fractal, and using 
Lemma 3.5, we obtain the following lemma which can be easily proved inductively.

Lemma 3.8. A finite union of {Xi}ni=1 underlying spaces of topological fractals such that Xi∩Xj is an empty 
set or a singleton for every i �= j, is underlying space for some topological fractal.

Remark 3.9. Note that the assumption 2) in both Corollary 3.4 and Corollary 3.7 is satisfied if F ′ is 
topologically contracting system on Y = F ′(Y ∪Z) (and P ′ - topologically contracting on Z = P ′(Y ∪Z)). 
Then due to the Lemma 2.4 we obtain its (their) topological contractivity on the whole union Y ∪ Z.
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4. Peano continua as topological fractals

We are interested in the old question posted by Hata in 1985:

Problem 4.1. Is every Peano continuum an underlying space for some topological fractal?

In fact Hata in his paper [5, page 392] asked is every locally connected continuum Q is an invariant set 
(F(Q) = Q) for the finite family F of so-called weak contractions. Now we know that such space Q with 
family F is exactly the same as topological fractal. Namely, a space Q is an underlying space for some 
topological fractal if and only if there exists a finite family F of weak contractions such that F(Q) = Q (see 
[3, 6.4]).

In the [4] we show that a Peano continuum X with a free arc is an underlying space for some topological 
fractal. The idea of the proof, shown in Fig. 2, is to use a fractal structure F on the arc Y and extend it 
to the whole X, like in the Corollary 3.4. Moreover, using continuous images of arc Y we could cover the 
whole X \ Y .

This prompted us to look for special subsets of a Peano continuum which are underlying space for some 
topological fractal and their continuous images can cover the whole Peano continuum. We also want to use 
continuous maps which are constant outside some open set such that we can guarantee that the assumption 
(ii) from Theorem 3.3 will be met. It is easy to prove that

Remark 4.2. For U � A ⊂ X where U is open, A is a closed subset of topological space X and for every 
continuous map f : A → A constant on A \U (so f(A \U) = {x0}), we can construct its continuous extension 
f̄ : X → X constant on X \ U in the following way: for every x ∈ X

f̄(x) =
{
f(x) , x ∈ U

x0 , x ∈ X \ U.

Note that the construction of f̄ implies that f̄(X) = A.
Here we present one of our main theorems for a Peano continuum, which gives sufficient conditions for 

being the underlying space for some topological fractal.

Theorem 4.3. A Peano continuum X is an underlying space for some topological fractal if there exists a 
topological fractal (A, F) such that A ⊂ X and if there exists a nonempty open set U � A such that the 
following assumptions hold

(i) all maps from F are constant on A \ U
(ii) there exists 

⋃n
i=1 Pi finite union of Peano continua such that X \A ⊂

⋃n
i=1 Pi ⊂ X \ U .

Proof. Due to the Remark 4.2 we can assume that F contains continuous self-maps on X, constant outside 
the set U . Then F is a topologically contracting system on X and A = F(X). We shall construct a finite 
family P of continuous self-maps on X such that:

a) P(X) =
⋃n

i=1 Pi

b) for all p ∈ P the map p|X\U = const.

There is nothing to prove if X is a singleton. Then (X, idX) is a topological fractal.
If |X| > 2, then every open subset U of Peano continuum X is infinite. Thus the finite union 

⋃
f∈F f(X) =

F(X) = A ⊃ U is also infinite. This means that there exists f0 ∈ F such that f0(X) has at least two points. 
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It is also a compact and connected set as a continuous image of the Peano continuum X. Now we take 
a continuous map ϕ : f0(X) → R such that its image imϕ is a continuum with at least two points (its 
existence is a result of Tietze extension theorem). This means that imϕ is an interval (we can assume that 
[0, 1]) - see Fig. 3.

Fig. 3. ϕ : f0(X) → R.

For every i = 1, . . . , n and Peano continuum Pi there exists an embedding ei : [0, 1] → Pi. Now define 
P = {ei ◦ ϕ ◦ f0}ni=1, a finite family satisfying a) and b). This implies that X = F(X) ∪ P(X) and f(imp)
is a singleton for all f ∈ F ∪ P and p ∈ P. Family F ∪ P satisfies the assumption (!) from Theorem 3.3 so 
(X, F ∪ P) is a topological fractal. �

Looking for the topological fractal (A, F) satisfying assumptions from the above theorem we have to 
remember about the following

• A is a finite union of compact and connected sets (because A = F(X));
• if X is infinite then also A is infinite (because it contains an open set).

Several observations of a Peano continuum will lead us to the conclusion that the condition (ii) from 
Theorem 4.3 is always true for some U open subset of a given set A with nonempty interior. First, let us 
recall that a Peano continuum is a continuous image of the unit interval and every continuous map on the 
compact space is uniformly continuous. Such uniform continuity gives us the following

Lemma 4.4. Every Peano continuum in every metric is a finite union of Peano continua of an arbitrary 
small diameter.

Now we prove the announced proposition

Lemma 4.5. Let X be a Peano continuum and A ⊂ X has nonempty interior. Then there exists a nonempty 
open set U ⊂ A such that X \ U is a finite union of Peano continua.

Proof. Take an arbitrary metric d on X. The open set intA �= ∅ so there exists an element x0 ∈ X and 
a positive radius ε > 0 such that the open ball B(x0, ε) ⊂ intA. Due to the Lemma 4.4 there exist Peano 
continua P1, P2, . . . , Pn of diameters < ε such that X =

⋃n
i=1 Pi. We can assume that Pi �⊂

⋃
j �=i Pj for all 

i = 1, . . . , n. Thus we have for every i = 1, . . . , n

(a) 0 < diamPi < ε

(b) Pi \
⋃

j �=i Pj �= ∅.

Now, take an index i0 ∈ {1, . . . , n} such that x0 ∈ Pi0 . By (a) we obtain that Pi0 ⊂ B(x0, ε) ⊂ intA so 
X \ A ⊂

⋃
j �=i0

Pj . Define an open set U := Pi0 \
⋃

j �=i0
Pj = X \

⋃
j �=i0

Pj . By (b) it is a nonempty subset 
of A and X \ U =

⋃
Pj is a finite union of Peano continua. �
j �=i0
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Remark 4.6. It is not true that for an arbitrary open set U ⊂ X, the thesis of Lemma 4.5 holds. The 
counterexample may be the following: X = [0, 1] and take the strictly decreasing sequence (an) ⊂ X. Then 
the set U =

⋃∞
n=0(a2n, a2n+1) is open but X \ U is the infinite union of disjoint intervals.

This is the reason why we need to consider the existence of the set A where, for an arbitrary open subset 
U , we can a find fractal structure F satisfying the condition (i) from Theorem 4.3. This leads us to the 
notion of self regenerating fractal.

Definition 4.7. A Hausdorff topological space A is called a self regenerating fractal if for every nonempty, 
open set U ⊂ A there exists a family F of continuous self-maps on A, constant outside U , such that (A, F)
is a topological fractal.

Existence of such space inside a Peano continuum X guarantees that X is an underlying space for some 
topological fractal. Indeed, we have the following main theorem

Theorem 4.8. For every Peano continuum X which has A ⊂ X self regenerating fractal with nonempty 
interior, X is an underlying space for some topological fractal.

Proof. Due to the Lemma 4.5 we can find an open nonempty set U ⊂ A such that X \ U is a finite union 
of Peano continua, so it satisfies the assumption (ii) from Theorem 4.3. Then by the definition of self 
regenerating fractal there exists a family F of continuous self-maps on A, constant outside U , such that 
(A, F) is a topological fractal. Thus we obtain the assumption (i) and the Theorem 4.3 implies that X is 
an underlying topological space for some topological fractal. �

Therefore we went a step further in finding the answer to the Hata’s Problem 4.1, but we can ask another 
two questions.

Problem 4.9. Has every Peano continuum which is an underlying space for some topological fractal, a self 
regenerating fractal as a subset with nonempty interior?

In other words: is the converse of Theorem 4.8 true?

Problem 4.10. Is there a nontrivial Peano continuum without a self regenerating fractal as a subset with 
nonempty interior?

5. Self regenerating fractals

In this chapter we will expand our knowledge about self regenerating fractals which plays an important 
role in the main theorem of this paper. Let us notice that the definition of self regenerating fractal tries 
to catch the sense of self-similarity - every small piece of the space is a “copy” of the whole object. The 
structure of a self regenerating fractal must be rich enough for its every piece to be able to self regenerate a 
finite cover of the whole object. Such property appears for example in classical self-similar fractals like the 
Cantor set, Sierpiński triangle, etc. Each of their open subsets contains the small copy of the figure - the 
building block for the whole set. This leads us to the notion of (self-similar) brick.

Definition 5.1. Let X be a topological space and B ⊂ X is closed. A pair (B, P) is called a brick of X if P
is a finite family of continuous maps on B and P(B) ∪B = X.
Moreover if B is the attractor for IFS F , then the triple (B, F , P) is called self-similar brick.
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Theorem 5.2. Let X be a compact metric space and (B, F , P) is a self-similar brick. Let C := P(B). Then 
the following implications hold:

∃ϕ : X → B Lipschitz on B, continuous surjection, constant on C (***)

⇓

∀f ∈ F ∃ϕf : X → f(B) Lipschitz on B, continuous surjection, constant on C (**)

⇓
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1) ∃P ′ finite family of continuous maps X → C, constant on C s.t. P ′(X) = C.

(2) ∃F ′ finite family of continuous maps X → B, Lipschitz on B and constant on C s.t.
(a) F ′(X) = B

(b) ∀f ∈ F ′ Lipf |B < 1

(*)

⇓

(X,F ′ ∪ P ′) is a topological fractal and F ′ ∪ P ′contains maps constant on C

Proof. Step 1. (***)⇒(**)
For every f ∈ F the map ϕf := f ◦ ϕ is a continuous surjection X → f(B), Lipschitz on B and constant 
on C.

Step 2. (**)⇒(*)
Note that B =

⋃
f∈F f(B) =

⋃
f∈F ϕf (X). Take α = maxf∈F Lipf < 1 and β = maxf∈F Lip(ϕf |B). There 

exists a number k ∈ N such that αkβ < 1. Define F ′ = {g ◦ ϕf ; g ∈ Fk, f ∈ F} - a finite family of maps 
X → B Lipschitz on B, constant on C and satisfying

(a) F ′(X) =
⋃

h∈F ′ h(X) =
⋃

g∈Fk

⋃
f∈F (g ◦ ϕf )(X) =

⋃
g∈Fk g(

⋃
f∈F ϕf (X)) =

⋃
g∈Fk g(B) = B;

(b) for every h ∈ F ′ its Lipschitz constant on B is Lip(h|B) = Lip(g ◦ ϕf |B) ≤ αkβ < 1.

This gives us an assumption (2). Define also P ′ = {p ◦ ϕf ; p ∈ P, f ∈ F} - a finite family of continuous 
maps X → C, constant on C such that

P ′(X) =
⋃

h∈P′

h(X) =
⋃
p∈P

⋃
f∈F

(p ◦ ϕf )(X) =
⋃
p∈P

p(
⋃
f∈F

ϕf (X)) =
⋃
p∈P

p(B) = P(B) = C.

Thus we obtain (1).
Step 3. (*)⇒ (X, F ′ ∪ P ′) is a topological fractal where F ′ ∪ P ′ contains maps constant on C

Note that X = B ∪ C = F ′(X) ∪ P ′(X) =
⋃

f∈F ′∪P′ f(X) and F ′ (by Remark 2.3) is topologically 
contracting on B (so also on X). Moreover each map f from F ′ ∪ P ′ is constant on C so for every p ∈ P
the set f(imp) is a singleton. This means that F ′ ∪ P ′ satisfies an assumption (!) from Theorem 3.3 which 
gives the thesis. �

Using this theorem and noting that X \ U ⊂ X \B ⊂ C for every U ⊃ B, we obtain the following

Corollary 5.3. A compact metric space X is a self regenerating fractal if for every U open set in X there 
exist B ⊂ U and families F , P such that (B, F , P) is a self-similar brick of X satisfies (***), (**) or (*).
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5.1. Examples of the self regenerating fractals

In this subsection we present several examples of self regenerating fractals and spaces that are not such 
fractals. Most of them satisfy the condition (***) from Corollary 5.3. Note that an open set using in all 
examples here is related to the subspace topology.

Example 5.4. The most trivial self regenerating fractal is a singleton.
The only one fractal structure on it is the identity map.

Example 5.5. The ternary Cantor set C is a self regenerating fractal.
In every U open subset of C we can find its small copy B which creates a self-similar brick (B, F , P)
together with families of affine maps where P(B) = C \ B. Then it is easy to find a function ϕ satisfying 
the assumption (***) - as in Fig. 4.

Fig. 4. ϕ is the identity on B, continuous function, constant on C \ B.

By Corollary 5.3 we obtain that C is a self regenerating fractal.

Below we present some IFS-attractors connected and locally connected which are self regenerating frac-
tals. This can generate many examples of Peano continua that become topological fractals according to the 
Theorem 4.8.

Example 5.6. The unit interval I = [0, 1] is a self regenerating fractal.
Indeed, for every nonempty, open set U ⊂ I there exists the interval [a, b] ⊂ U . Let families

F = {f1 : [a, b] →
[
a,

b + a

2

]
, f2 : [a, b] →

[b + a

2 , b
]
} and P = {p1 : [a, b] → [0, a], p2 : [a, b] → [b, 1]}

contain affine maps from interval [a, b] to another one. Then ([a, b], F , P) is self-similar brick where P([a, b]) =
I \ (a, b). Take ψ : I → [a, b+a

2 ] such that

ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩
x for x ∈ [a, b+a

2 ]
a + b− x for x ∈ ( b+a

2 , b]
a for x /∈ [a, b].

It is a continuous and non-expanding map constant outside (a, b). Then the map ϕ : I → [a, b] defined 
ϕ(x) = 2(ψ(x) − a) + a satisfies the assumption (***). The graph of ϕ is the following:

�

�

�
�
�
��

�
�
�

a b 1

a

b

ϕ
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Thus, by Corollary 5.3, we obtain that I is a self regenerating fractal.

Example 5.7. The Koch curve K is a self regenerating fractal.
In every U open set in K there exists B, a small copy of Koch curve. This leads us to the self-similar 
brick where F is a classical IFS for Koch curve scaled to B and P is a family of similarities such that 
P(B) = K \B. Using a symmetry map and transforming the complement of B into one point we obtain a 
continuous map non-expanding on B and constant outside B. After scaling its image to the set B, we get 
the transformation ϕ from assumption (***). See Fig. 5.

Fig. 5. Construction of the continuous surjection ϕ : K → B, Lipschitz on B and constant on K \ B. This set (black) is transformed 
into one point.

Example 5.8. The Sierpiński triangle T is a self regenerating fractal.
In every U open set in T there exists B, a small copy of Sierpiński triangle. This leads us to the self-
similar brick (B, F , P) where F is a standard (scaled) IFS for T and P contains translations such that 
P(B) = T \B. The continuous surjection ϕ : T → B is a composition of two axial symmetries, retraction 
constant on T \B and similarity transformation - like in Fig. 6.

Fig. 6. Construction of the continuous surjection ϕ : T → B Lipschitz on B and constant on T \ B (black part of figure), satisfying 
the assumption (***).

Example 5.9. The Sierpiński carpet S is a self regenerating fractal.
In its every open subset U we can find B, a small affine copy of Sierpiński carpet. This gives us the self-
similar brick (B, F , P) where P(B) = S \B. Now we can construct the map from the assumption (***): it 
is a composition of three axial symmetries, several metric projection and a similarity transformation (see 
Fig. 7). All those maps are Lipschitz. By a metric projection on the plane into the convex set Y ⊂ R2 we 
understand a map f : R2 → Y where d(x, f(x)) = inf{d(x, y); y ∈ Y } for every x ∈ R2.

The following interesting questions remain open:
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Fig. 7. Construction of the continuous surjection ϕ : S → B Lipschitz on B and constant on S \ B. This set (black part) is 
transformed into the one point.

Problem 5.10. Are Menger cube and Barnsley fern self regenerating fractals?

Problem 5.11. Find an example of Peano continuum which is not a self regenerating fractal?

We can present some non-connected examples of topological fractals that are not self regenerating fractals:

(1) X∪Y where X, Y are disjoint sets with respectively finite and infinite cardinality, for example [0, 1] ∪{2}
or { 1

n}n∈N ,
(2) X ∪ Y where X, Y are disjoint sets with respectively finite and infinite connected components, for 

example I ∪ C (interval and the Cantor set) or { 1
n}n∈N .

Moreover the Open Set Condition not guarantees that the space will be a self regenerating fractal. Let us 
recall that a topological fractal (X, F) satisfies OSC if there exists an open V ⊂ X such that {f(V ); f ∈ F}
are pairwise disjoint and 

⋃
f∈F f(V ) ⊂ V . The set [0, 1] ∪ {2} is an example which has OSC but is not a 

self regenerating fractal.
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